Search results for "translation rate"

showing 2 items of 2 documents

Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures

2016

To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to…

0301 basic medicineSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilitySaccharomyces cerevisiaeBiophysicsSaccharomyces cerevisiaeProtein degradationBiochemistryRibosomeRibostasis03 medical and health sciencesStructural BiologyGene Expression Regulation FungalGene expressionProtein stabilityGeneticsProtein biosynthesisHomeostasisRNA MessengerMolecular BiologyRegulation of gene expressionTranslation ratebiologyTemperaturebiology.organism_classificationYeastYeastCell biology030104 developmental biologyProteostasisBiochemistryProtein BiosynthesisProteostasisRibosomes
researchProduct

A Trans-Omics Comparison Reveals Common Gene Expression Strategies in Four Model Organisms and Exposes Similarities and Differences between Them.

2021

AbstractThe ultimate goal of gene regulation should focus on the protein level. However, as mRNA is an obligate intermediary, and because the amounts of mRNAs and proteins are controlled by their synthesis and degradation rates, the cellular amount of a given protein can be attained following different strategies. By studying omics datasets for six expression variables (mRNA and protein amounts, plus their synthesis and decay rates), we previously demonstrated the existence of common expression strategies (CES) for functionally-related genes in the yeastSaccharomyces cerevisiae. Here we extend that study to two other eukaryotes: the distantly related yeastSchizosaccharomyces pombeand cultur…

0301 basic medicineTranscription GeneticRNA StabilityCèl·lulesSaccharomyces cerevisiaeved/biology.organism_classification_rank.speciesSaccharomyces cerevisiaeComputational biologytranscription ratetranslation rateArticle03 medical and health sciences0302 clinical medicinePhylogeneticsGene Expression Regulation FungalGene expressionHumansmRNA stabilityModel organismGenelcsh:QH301-705.5OrganismRegulation of gene expressionbiologyPhylogenetic treeved/biologyProkaryotephenogramGeneral Medicinebiology.organism_classification030104 developmental biologyprotein stabilitylcsh:Biology (General)Schizosaccharomyces pombe030217 neurology & neurosurgeryInteraccions RNA-proteïna
researchProduct